Monday, March 18, 2024

Geological Contacts: Angular Unconformity Kaladgi Basin

 Remotely India Series #12

Through the Proterozoic Eon, beginning around 2 billion years ago,  extensional forces acting on continental crust opened up several sedimentary basins across what is now peninsular India. Crustal blocks subsided along faults and these depressions filled in with sediments deposited in fluvial and shallow marine environments. These basins were long lived, some lasting for more than a billion years. 

Sedimentation was not continuous.  Pulses of sediment deposition were punctuated by long periods of non deposition. Tectonic movements deformed early deposited piles of sediment. They were uplifted and an extensive basin wide erosional surface formed.

There was then a renewed phase of basin development. Sediment of these successor basins were deposited on tilted and folded older strata. Commonly, these younger packages of sediments are relatively undeformed. They are preserved as mesas and plateaus made up of flat lying strata. This discordance in attitude between two sets of strata separated by a widespread erosion surface is known as an angular unconformity.

In this post I will highlight an angular unconformity from the Kaladgi Basin from north Karnataka, south India. I have used high resolution imagery from Indian Space Research Organization's Cartosat.  Imagery is available for browsing and download from ISRO's Bhuvan 2D web maps.

The first image shows the area around Ramdurg village. The multi-stage history of the basin is readily apparent. The light colored strata exposed along narrow ridges are folded, while the rust brown hills are made up of undeformed sediments. The light toned strata are quartzites of the Bagalkot Group. The brown sandstone which rest on the Bagalkot quartzites are the Badami Group. Standard annotations show the varying dip and strike of the folded Bagalkot sediments. The white cross in grey circle denotes horizontal Badami strata. 

Kaladgi Basin history has become clearer based on recent geochronologic work by Shilpa Patil Pillai, Kanchan Pande, and Vivek S.Kale. They infer that basin initiation occurred around 1.4 billion years ago. Sedimentation of the Bagalkot Group terminated by 1.2 billion years ago. Movement along major WNW-ESE and tranverse NNE-SSE to NE-SW trending faults deformed the Bagalkot sediments into a series of folds around 1.1 billion years ago. This was followed by uplift and erosion of these folded sediments. Deformation was accompanied by low grade metamorphism of these rocks.

The basin floor subsided again around 900 million years ago initiating deposition of the Badami Group of sediments. The famous cave temples of Badami have been cut out from the lower part of the Badami sedimentary sequence.

The next imagery is a good example on how to recognize the relative timing of deformation events. Arrows point to fracture sets in the Bagalkot quartzites. These lineaments do not extend into the Badami sediments implying that fracturing occurred during an earlier phase of deformation. 

Let's look at a location that shows the angular discordance between the Bagalkot and Badami sediments. This is near Shirur town, north of Badami.  The lighter toned steeply tilted Bagalkot sediments outcrop as E-W trending narrow ribbons, north of Budanagad village. The brown colored Badami sediments form a more extensive plateau. Since these strata are horizontal, the traces of bedding planes form concentric bands mimicking contour lines. 

The final location is just south of Ramdurg village. The unconformity here is a little harder to decipher, but you can make out the tilt of the light colored Bagalkot quartzites, annotated by the standard notation of strike and dip. The quartzites form triangular facets sloping eastwards. Like the previous example, the concentric bands of brown in the adjacent hill indicates that this is the overlying horizontally disposed Badami sandstone.

Many Proterozoic basins of India contain such unconformity bounded sequences. Some more classic examples come from the Chattisgarh, Cuddapah, and Vindhyan basins. These sequences from different basins were not deposited synchronously. Each basin has it own trajectory of sedimentation, deformation, and erosion. 

Detailed field mapping, supplemented by absolute dating of rocks wherever possible, is elucidating the complex poly-phase history of Indian Proterozoic sedimentary basins in the context of global continental breakup and reassembly. For arm chair geologists and enthusiasts, easily available web mapping technology makes it possible to join in the excitement of teasing out these terrain's many secrets hiding in plain sight.

Monday, March 4, 2024

Links: Earthquake Detectives, Origin Of Life, India Water Act

Reading from the past few weeks- 

1) How earthquake scientists solved the mystery of the last “Big One” in the Pacific Northwest. The American northwest is a tectonically active region. About 150 km west of the Pacific coast is the Cascadia subduction zone. Here, the Juan de Fuca, Explorer, and Gorda tectonic plates slide underneath the continental plate of North America. Large earthquakes have occurred in the past and will occur in the future. 

Reporter Gregor Craige has written a book, On Borrowed Time: North America’s Next Big Quake, in which he explores the region's earthquake potential and the cross disciplinary studies that enable scientists to understand past earthquake history as well as the impact a big future earthquake will have. Canadian Geographic has shared an abstract from his book. The earthquake puzzle was solved by combining information from tree rings, Native American peoples memories of past events, and Japanese record of tsunamis. It is fascinating reading. 

2) To unravel the origin of life, treat findings as pieces of a bigger puzzle. Was life's beginnings in a warm little pond or in a deep sea hydrothermal vent? Did lightning provide the energy, did asteroids provide the organic matter? There are many many scenarios that try to provide an explanation to this vexing question. 

One of the leading researchers of this field, Nick Lane, and his colleague Joana Xavier, have summarized some of the key arguments and problems of the field in this tour de force of science writing. Highly recommended! 

3) Analysis: The Great Indian Water Act Of 2024. In more good news for industries, factories and foreign investors, yet another Indian environmental law has been diluted to facilitate “ease of business”. Shailendra Yashwant begins his analysis of The Water Amendment (Pollution and Prevention) Act, 2024 Bill on this depressing note. Amendments seek to "rationalize criminal provisions". Polluters can now escape jail time and get away by just paying a fine. All this when climate change and water security is one of the big challenges facing India. 

Friday, February 16, 2024

Patterns Of Angiosperms And Insect Evolution

Charles Darwin famously called it an '√°bominable mystery'. He was referring to the sudden appearance and diversification of flowering plants in the Cretaceous fossil record. He noticed that these early fossils resembled modern flowering plants. 'Primitive' or ancestral stages were missing. Today, biologists categorize these as crown and stem representatives of a group. 

The first fossil evidence of flowering plants is from 140-130 million year old sediments. These are early types of pollen grains with one aperture (uniaperturate). Triaperturate pollen is found in slightly younger 125 million year old rocks. Towards the end of the early Cretaceous, by around 100 million years ago, flowers, leaves, and other organs appear from several continents representing all the major groups of angiosperms.

The picture below is of an early Cretaceous (~100 million year old) flowering plant from the lotus family. The location is northeast Brazil. There is a remarkable preservation of the whole plant, with connected roots, rhizome, leaves, and aggregate fruit. 

Source: William Vieira Gobo Nature Scientific Reports 2023- A new remarkable Early Cretaceous nelumbonaceous fossil bridges the gap between herbaceous aquatic and woody protealeans.

Taking a long view of their evolutionary pattern, angiosperm diversification is structured in three phases. The first phase was a steady expansion through early to late Cretaceous. There was more rapid diversification in late Cretaceous by around 70 million years ago. Enumeration of floral species through the Cretaceous indicate that angiosperms made up about 5% of species in early Cretaceous, increasing to 80% by Maastrichtian times (late Cretaceous). Despite this increase in species numbers, in terms of biomass, angiosperms were still a small component of Cretaceous floras. Their domination of floral communities, including the origin of modern wet tropical forests, began in the Paleogene (65-24 million years ago) after the end Cretaceous mass extinction. Michael J. Benton, Peter Wilf, and Herve Sauquet have provided a good overview in New Phytologist of this pivotal phase of ecosystem change.

These evolutionary changes did not occur in isolation. Throughout the Cretaceous, significant changes were occurring to terrestrial ecosystems, with the origination of many plant and animal groups. This extended phase of ecosystem reorganization is known as the Cretaceous Terrestrial Revolution. Angiosperm diversification is thought to have played a key role in this transformation of land biodiversity, so much so, that the phase from about 100 million years to 50 million years ago is known as the Angiosperm Terrestrial Revolution.

The Cretaceous -Paleogene mass extinction hit angiosperms hard, as well as altering the trajectory of their evolution. For example, there was a 40% loss of diversity of flowering plants in Colombia following the mass extinction. But certain attributes of angiosperms, such as their partnerships with other organisms, their ability to efficiently capture energy and enhance photosynthetic rates, and an underlying genetic propensity to speciate, resulted in them expanding rapidly in the post extinction landscape. Angiosperm evolution opened up opportunities for a variety of land creatures including insects, spiders, lizards, birds, and mammals,  eventually driving up terrestrial biodiversity to 10 times more as marine biodiversity.

Paleobiologists are interested in understand the interaction and impact angiosperm diversification could have had on other groups of plants and animals. Of particular interest is the diversification of insects in the Cretaceous and Paleogene.

Modern insect lineages began diversifying by 245 million years ago, long before angiosperms evolved. Gymnosperm and insect communities preserved in amber and sediments show that insects had an intricate relationship with host gymnosperms like cycads, conifers and ginkgoaleans.  Insect pollination of gymnosperms predated the origin of angiosperms by at least 100 million years and their fossil record show phases of diversification even when angiosperms were rare. 

Did angiosperm evolution also drive a rise in insect diversity? Pollinator insects particularly would seem to benefit from an abundance in flowering plants, and if so, what co-evolutionary patterns are apparent from the fossil record?

David Perise and Fabien Condamine have tackled this question in a new study in Nature Communications. I will share this beautifully compiled infographic from the paper that conveys so clearly the patterns of angiosperm and insect diversification through the Cretaceous and Cenozoic.

Digging into published databases, the researchers compiled data on the origination and extinction times of angiosperm and insect families. They then statistically analyzed whether angiosperm and insect origination and extinction times, and pulses of their diversification coincide. Their analysis showed that angiosperms seemed to have played a dual role in insect evolution. They mitigated insect extinction through the Cretaceous and spurred on the origination of new insect groups in the Cenozoic. Besides a broad analysis of insects, they also found that pollinator insects like bees and long proboscid butterflies show a pronounced diversification alongside angiosperm lineages. 

The success of angiosperms in the late Cretaceous and Cenozoic coincided with the decline in gymnosperms. Intrinsic mechanisms of genomic rearrangements in angiosperms resulted in repeated evolution of novel traits and specializations. They competitively displaced gymnosperms. The impact on gymnosperm dependent insects was variable. Generalist insect pollinators such as several beetle lineages transitioned to angiosperms. Much of the co-diversification of angiosperm and insects can be explained by this shift of gymnosperm pollinators to angiosperm hosts.  Gymnosperm specialized insect groups did not fare that well. For example, gymnosperms like Cheirolepidiaceae and Bennettitales went extinct by the latest Cretaceous. This was followed by the extinction of insect groups that were dependent on these plants such as some specialized long-proboscid flies, scorpionflies and lacewings.

Insect diversification did not depend only on angiosperms. Analysis also shows that warmer climate phases negatively impacted insect diversity and coincided with higher insect extinction rates. There seems also to be a relationship with other plant types. Spore plant and gymnosperm diversity had a positive impact on origination rates of insects. Ecosystem relationships and dependencies are multifarious and complex as this analysis between angiosperm and insect co-evolution shows.

Darwin's anxiety over flowering plants reflected his insistence that evolution is gradual. Nature does not make leaps, he stressed. He explained abruptness in the fossil record by invoking missing strata due to non deposition and erosion. Regarding flowering plants, he suggested that fossils were perhaps preceded by a period of cryptic evolution of that lineage that took place in a remote area or a lost continent, although he conceded that this was a poor explanation. However, this latter view, that a substantial lag time or a long fuse precedes the bang, continues to resonate among many biologists. Molecular methods that compares accumulated genetic difference to calculate the time of divergence of groups indicate a fairly long gap between the genetic branching of lineages and their first fossil appearance. 

Most familiar is the example of the origin of animals. Molecular data indicate that animals originated by 750 million years ago, yet unequivocal animal fossils appear by 570 million years ago, close to 200 million years later. Similarly, some molecular estimates put angiosperm origins to pre-Cretaceous times, stretching back 240-200 million years ago to Triassic-Jurassic, a good 100 million to 60 million years before first appearance of fossils.

This idea of a phylogenetic fuse has been recently criticized. Published in Systematic Biology, Graham E. Budd and Richard P. Mann have undertaken a critical examination of molecular clock methods. Their analysis indicate that popular methods used to assign probabilities to maximum age of lineages are biased against rapid lineage radiations being true evolutionary events. In their view, the mismatch between molecular dates of lineage origin and the timing of the first appearance of their fossils is an artifact. They point out that the coincident appearance of fossils from widespread localities in a particular sequence and across different modes of preservation faithfully records evolution. The time gap between the origin and later diversification of lineages is not that deep.

The 'abominable mystery' of the sudden appearance of fossil groups may in fact be a real biological motif in earth history, signalling the rapid radiation of lineages filling ecologic spaces following an environmental crises and evolutionary innovation.

Monday, January 29, 2024

Is It A Lava Tube?

My latest field geology video is about a small cave in the basalt lava near my house in Pune city. The location is Hanuman tekdi, also known as Fergusson College Hill. The cave is along the slope right behind IMDR canteen. 

Is the cave a remnant of a lava tube, or has it formed by some other process? 

Sound on. Permanent Link - Fergusson College Hill Cave.

You can access this cave by walking along the path starting from the main gate of Gokhale Institute of Politics and Economics. Turn left as you approach the hill and after a few steps look up to the right. 

Visit quickly. As you can see from this photo, rubble from the construction works of water tanks at the top of the slope is slowly spreading and might cover up this cave. I hope not. 

More geology videos soon!

Tuesday, January 16, 2024

Deep Pacific Upside Down Waterfall

This passage from Helen Czerski's Blue Machine: How The Ocean Shapes Our World gives us a glimpse of the wondrous undersea universe we are just beginning to explore.

"We see upside-down waterfalls, she says. I don't understand what she means at first, and it takes me a few seconds to process the video as Deb keep talking. In those vertical chimneys, the walls crack and hydrothermal fluids come leaking out and  you get something that looks like half a toadstool growing out of a tree in an old growth forest. And suddenly I see it. This is a gigantic hydrothermal chimney looming out of the darkness, and hot water is indeed leaking out of its side. But because hot water is less dense than cold water, the hot water keeps flowing rapidly upwards. When it first hits cold water, its clearly dumped some minerals and made a ledge that sticks out- that's the toadstool shape that Deb is referring to. The water flowing upwards has had to flow outwards underneath the ledge before it can carry on upwards. But the ledge has developed a hollow on its underside like an upside-down bowl, so there is a pool of hot water there, held in the hollow as if it were filling up the inside of an umbrella. The boundary between hot and cold water shimmers like a mirror. And then the hot water is spilling out of its hollow and continuing upwards into the gloom. It really is an upside down waterfall".

Helen Czerski is watching this footage captured by a remotely operated vehicle exploring the area around the Juan de  Fuca Ridge, an undersea mountain chain a few hundred kilometers west of Seattle. Here, the Pacific and the Juan de Fuca tectonic plates diverge. Scientists are closely monitoring this ridge for seismic and volcanic activity, using a network of sensors  called the Regional Cabled Array. Deb Kelly is the Director of this project. Hydrothermal chimneys are sulfide and carbonate mineral deposits that form when hot mineral saturated sea water emerges through cracks in the ocean crust. The are common near mid oceanic ridges where the interaction of sea water and rock heated up by magma generates vigorous hydrothermal systems.

I'm only a quarter into this book and am enjoying every page of it. Highly recommended!

Tuesday, January 9, 2024

Kenjalgad Perched Aquifer

I have been experimenting with shooting videos of geological features with an accompanying commentary. Here are two of my recent efforts.

Last month I visited Kenjalgad, a small fort near the town of Bhor. As is typical of forts of the Sahaydri ranges, it sits atop a thick basalt scarp. 

The videos explain the geological conditions for the formation of a perched aquifer. I hope I have been clear in my explanation. Sound on please! 

Kenjalgad aquifer. Location 1- Permanent Link

Kenjalgal aquifer. Location 2- Permanent Link

Kenjalgad as seen in this picture is quite an impressive mesa.

The aquifer I described in the video occurs within the topmost rock layers of the scarp forming basalt. They form discrete accumulations of groundwater high up on these ridges, separate from the aquifers underlying the surrounding valley.

I am planning on making more of these videos of various geologic features. Should they be a little longer, say two or three minutes each? I would appreciate some feedback from you.

Wednesday, January 3, 2024

The Making Of Iceland

Committees are underappreciated. 

xkcd comics.

Happy New Year everyone!