Dr. Robert Ginsburg, who spent much of his career studying the geological evolution of the Florida Keys died recently. The Depositional Record has an open access special issue in his honor packed with papers on the modern and ancient carbonate rock record.
In Precambrian times (before 542 million years ago), the precipitation of calcium carbonate on the sea floor was influenced by the activity of microbes. Beginning around 530 million years ago, complex multicellular organisms evolved the ability to secrete calcium carbonate as a protective shell. Since then, limestones have been forming by the aggregation of skeletons of marine organisms. They tell us about past biodiversity and the conditions in which these ancient organisms lived. Understanding the controls on the origin and accumulation of these sediments using present day examples provides useful analogues to interpret the past. Limestones (CaCO3) and dolostones (CaMg(CO3)2) are also important petroleum reservoirs.
The satellite image shows a portion of the Florida Keys carbonate platform. It is made up of a low energy shoreline with plant stabilized mud flats, quiet sea grass covered lagoons, and towards the southern reaches, an arcuate coral reef system. The sunlight waters provide ideal conditions for a complex community of shell secreting organisms. Broken down shell fragments accumulate either in-situ or are distributed across the platform by waves and currents. Dr. Ginsburg wanted to know the details of these processes.
In the published issue, there are quite a few papers on carbonate depositional environments and the sediment production and distribution processes in action in the Bahamas shallow marine region. These are supplemented by examples from other parts of the world, including the Florida Keys.
... and don't forget to read the warm humorous tribute celebrating the life and work of Dr. Ginsburg written by Eugene Shinn.
"But, what would be his dissertation subject? Someone came up with a catalogue advertising Fellowships at the University of Miami in Florida. When he asked Jack Hough about Miami, Jack admitted he had never heard of the place. In fact, no one that far north had heard of the University of Miami. Bob drove south for the interview anyway. He was on a mission, an idea he wanted to test. He wanted to determine the process by which sediment became rock. It seemed straightforward enough. All you had to do was dig a hole or push a core tube a few feet into the sediment until it stopped. That would be the zone of transition from sediment to rock. He got the Fellowship (about $3,000) and began his research. Of course, the problem turned out to be more difficult than expected, so difficult in fact that many scientists are still working on it today".
One of his seminal contributions was a proposal to explain the cyclic nature of carbonate sedimentary deposits. It is observed that many thick limestone sequences are made up of a repeated pattern of relatively deeper water subtidal sediments overlain by shallower water intertidal sediment. These couplets are stacked to form deposits that can be hundreds to even thousands of feet thick. Dr. Ginsburg suggested that this pattern arises due to the cyclical shifts in the reduction and expansion of source areas of carbonate sediment.
At times when the open sea area is large, healthy organic growth produces a large supply of skeletons. Breakdown of these skeletons produces carbonate mud. This mud is transported by currents and trapped along the shores causing accretion of tidal mud flats, which grow towards the open sea. This spread of tidal flats in turn eventually shrinks the size of the source region, reducing sediment supply and stopping tidal flat growth. Sediment production in this system then falters. Natural subsidence of the basin reestablishes water depths for optimum organic growth, again resulting in healthy sediment production, and the cycle restarts.
Here is the abstract of Dr. Ginsburg's model published in AAPG Bulletin in 1971.
Title: Landward Movement of Carbonate Mud: New Model for Regressive Cycles in Carbonates:
Repeated regressive cycles are characteristic of the Paleozoic shallow-water carbonates of North America; similar cycles are present, although less abundant, in Mesozoic and Cenozoic strata worldwide. Several of these cyclic carbonates contain major hydrocarbon reservoirs: Permian, Central Basin platform; Mississippian, Saskatchewan; Ordovician and Silurian, Montana. Studies of comparable recent deposits in Florida, the Bahamas, and the Persian Gulf suggest an alternative to the accepted tectonic explanation of these cycles.
The Florida Bay lagoon and the tidal flats of the Bahamas and Persian Gulf are traps for fine sediment produced on the large adjacent open platforms or shelves. The extensive source areas produce carbonate mud by precipitation and by the disintegration of organic skeletons. The carbonate mud moves shoreward by wind-driven, tidal or estuarine like circulation, and deposition is accelerated and stabilized by marine plants and animals.
Because the open marine source areas are many times larger than the nearshore traps, seaward progradation of the wedge of sediments is inevitable. This seaward progradation gives a regressive cycle from open marine shelf or platform to supratidal flat. As the shoreline progrades seaward the size of the open marine source area decreases; eventually reduced production of mud no longer exceeds slow continuous subsidence and a new transgression begins. When the source area expands so that production again exceeds subsidence a new regressive cycle starts.
The seaward progradation suggested by this model should be observable in ancient deposits.
This explanation of cyclicity is known as the autocyclic model, since all the feedbacks are internal to the system. The alternative explanation is called the allocyclic model. In this case, lithologic repeats are thought to result from changes in sea level caused by the growth and decay of polar ice caps due to cyclic changes in the solar radiation received by the earth (Milankovitch Cycles).
Dr. Ginsburg's work still generates a lot of debate.
Dive in!
In Precambrian times (before 542 million years ago), the precipitation of calcium carbonate on the sea floor was influenced by the activity of microbes. Beginning around 530 million years ago, complex multicellular organisms evolved the ability to secrete calcium carbonate as a protective shell. Since then, limestones have been forming by the aggregation of skeletons of marine organisms. They tell us about past biodiversity and the conditions in which these ancient organisms lived. Understanding the controls on the origin and accumulation of these sediments using present day examples provides useful analogues to interpret the past. Limestones (CaCO3) and dolostones (CaMg(CO3)2) are also important petroleum reservoirs.
The satellite image shows a portion of the Florida Keys carbonate platform. It is made up of a low energy shoreline with plant stabilized mud flats, quiet sea grass covered lagoons, and towards the southern reaches, an arcuate coral reef system. The sunlight waters provide ideal conditions for a complex community of shell secreting organisms. Broken down shell fragments accumulate either in-situ or are distributed across the platform by waves and currents. Dr. Ginsburg wanted to know the details of these processes.
In the published issue, there are quite a few papers on carbonate depositional environments and the sediment production and distribution processes in action in the Bahamas shallow marine region. These are supplemented by examples from other parts of the world, including the Florida Keys.
... and don't forget to read the warm humorous tribute celebrating the life and work of Dr. Ginsburg written by Eugene Shinn.
"But, what would be his dissertation subject? Someone came up with a catalogue advertising Fellowships at the University of Miami in Florida. When he asked Jack Hough about Miami, Jack admitted he had never heard of the place. In fact, no one that far north had heard of the University of Miami. Bob drove south for the interview anyway. He was on a mission, an idea he wanted to test. He wanted to determine the process by which sediment became rock. It seemed straightforward enough. All you had to do was dig a hole or push a core tube a few feet into the sediment until it stopped. That would be the zone of transition from sediment to rock. He got the Fellowship (about $3,000) and began his research. Of course, the problem turned out to be more difficult than expected, so difficult in fact that many scientists are still working on it today".
One of his seminal contributions was a proposal to explain the cyclic nature of carbonate sedimentary deposits. It is observed that many thick limestone sequences are made up of a repeated pattern of relatively deeper water subtidal sediments overlain by shallower water intertidal sediment. These couplets are stacked to form deposits that can be hundreds to even thousands of feet thick. Dr. Ginsburg suggested that this pattern arises due to the cyclical shifts in the reduction and expansion of source areas of carbonate sediment.
At times when the open sea area is large, healthy organic growth produces a large supply of skeletons. Breakdown of these skeletons produces carbonate mud. This mud is transported by currents and trapped along the shores causing accretion of tidal mud flats, which grow towards the open sea. This spread of tidal flats in turn eventually shrinks the size of the source region, reducing sediment supply and stopping tidal flat growth. Sediment production in this system then falters. Natural subsidence of the basin reestablishes water depths for optimum organic growth, again resulting in healthy sediment production, and the cycle restarts.
Here is the abstract of Dr. Ginsburg's model published in AAPG Bulletin in 1971.
Title: Landward Movement of Carbonate Mud: New Model for Regressive Cycles in Carbonates:
Repeated regressive cycles are characteristic of the Paleozoic shallow-water carbonates of North America; similar cycles are present, although less abundant, in Mesozoic and Cenozoic strata worldwide. Several of these cyclic carbonates contain major hydrocarbon reservoirs: Permian, Central Basin platform; Mississippian, Saskatchewan; Ordovician and Silurian, Montana. Studies of comparable recent deposits in Florida, the Bahamas, and the Persian Gulf suggest an alternative to the accepted tectonic explanation of these cycles.
The Florida Bay lagoon and the tidal flats of the Bahamas and Persian Gulf are traps for fine sediment produced on the large adjacent open platforms or shelves. The extensive source areas produce carbonate mud by precipitation and by the disintegration of organic skeletons. The carbonate mud moves shoreward by wind-driven, tidal or estuarine like circulation, and deposition is accelerated and stabilized by marine plants and animals.
Because the open marine source areas are many times larger than the nearshore traps, seaward progradation of the wedge of sediments is inevitable. This seaward progradation gives a regressive cycle from open marine shelf or platform to supratidal flat. As the shoreline progrades seaward the size of the open marine source area decreases; eventually reduced production of mud no longer exceeds slow continuous subsidence and a new transgression begins. When the source area expands so that production again exceeds subsidence a new regressive cycle starts.
The seaward progradation suggested by this model should be observable in ancient deposits.
This explanation of cyclicity is known as the autocyclic model, since all the feedbacks are internal to the system. The alternative explanation is called the allocyclic model. In this case, lithologic repeats are thought to result from changes in sea level caused by the growth and decay of polar ice caps due to cyclic changes in the solar radiation received by the earth (Milankovitch Cycles).
Dr. Ginsburg's work still generates a lot of debate.
Dive in!
No comments:
Post a Comment