Monday, November 9, 2015

Quote: Stephen Jay Gould On Paleontology

This study of periodicity of mass extinction was published last month-

Periodic impact cratering and extinction events over the last 260 million years - Michael Rampino and Ken Caldiera.
 
The claims of periodicity in impact cratering and biological extinction events are controversial. A newly revised record of dated impact craters has been analyzed for periodicity, and compared with the record of extinctions over the past 260 Myr. A digital circular spectral analysis of 37 crater ages (ranging in age from 15 to 254 Myr ago) yielded evidence for a significant 25.8 ± 0.6 Myr cycle. Using the same method, we found a significant 27.0 ± 0.7 Myr cycle in the dates of the eight recognized marine extinction events over the same period. The cycles detected in impacts and extinctions have a similar phase. The impact crater dataset shows 11 apparent peaks in the last 260 Myr, at least 5 of which correlate closely with significant extinction peaks. These results suggest that the hypothesis of periodic impacts and extinction events is still viable.

This idea is not new and I remembered Stephen Jay Gould's essay "The Cosmic Dance of Siva" (in The Flamingos's Smile) which describes one of the early such hypothesis followed by his trademark meditations of the role of paleontology in understanding the nature of evolution  and the history of life. Gould was always irked by the opinions held by many that paleontology is a dusty sort of a science, where people spend their careers fighting over species names, and that they have nothing important to say about the theoretical aspects of evolution. A large part of his popular science writing effort was devoted to demolishing  this notion. He was very successful in it with essay after essay beautifully demonstrating the utmost importance of paleontology in highlighting life's little oddities as well as its grand patterns.

Paleontology in the early 1970's underwent something of a change in attitude. Decades before "big  data" became a buzzword, researchers led by David Raup, Jack Sepkoski,  Leigh Van Valen and Tom Schopf, to name a few,  began amassing enormous data sets on fossil characteristics and species distributions and subjected them to rigorous statistical analysis in an effort to elucidate distribution of biodiversity and macro-evolutionary trends. Gould's own work was substantial. Ideas such as "punctuated equilibrium" (with Niles Eldridge) which relies on the fossil record to tease out patterns in the mode and tempo of evolution, were met with admiration as well as fierce criticism as was his thinking on the role of contingency and chance and the limits of natural selection and adaptive evolution as explanations for life's historical trajectories. His theoretical forays did make paleontologists think more broadly about their data and what it tells us about evolution but my take is that it didn't cause a revolution in evolutionary theory as was made out by the media and by Gould's  rhetoric. But he did elevate the status of paleontology and that can only be good for science.

He writes:

Most hot  ideas turn out to be  wrong. I can only hope that I will not be remembered as the man who campaigned with a name for the nonexistent (surely worse than a moon for the misbegotten). Some chances are certainly worth taking. If Thalia smiles and Siva exists, think what it all will mean for my beloved science of paleontology. We have labored so long under the onus of boredom and dullness. We are guardians of life's history, but we are often depicted as mindless philatelists of stone; specialists in tiny corners of space, time, and taxonomy; purveyors of such arcane names  as Pharkidonotus percarinatus in extended orgies of irrelevant detail. The editors of Britain's leading scientific journal wrote of us in 1969: "Scientists in general might be excused for assuming that most geologists are paleontologists and most paleontologists have staked out a square mile as their life's work." 

That impression has changed since to include paleontology as an important contributor to evolutionary theory. For that, the field owes him a debt.

No comments:

Post a Comment