Friday, June 14, 2019

Insufficient Assessement: Pancheshwar Dam Uttarakhand

Environmental implications of Pancheshwar dam in Uttarakhand (Central Himalaya), India.

A warning from earth scientists that sufficiently detailed studies of seismic risks and potential environmental consequences have not been undertaken.

Map from the linked paper shows the location of the Pancheshwar Dam and the future backwaters in red.


We have assessed the likely environmental consequences of the proposed Pancheshwar high dam in  Uttarakhand Himalaya (Indian Central Himalaya) in the light of current geologic and geomorphic   understanding. The study suggests that if executed in its current  format, the proposed  dam  raises  concern  about  safety  and  its sustainability due to seismicity, reservoir-induced  seismicity,  slope instability due to reservoir draw down effect, and unpredictable large volume sediment  mobilization from paraglacial zones. The study therefore, highlights the pressing need to re-assess the feasibility and its  geo-environmental implications through multidisciplinary studies.

During my recent travels in Kumaon I met locals who were also expressing fears over loss of livelihoods as large tracts of fertile land will be drowned. 

Open Access.

Friday, May 31, 2019

Geology Outreach: Darma Valley, Uttarakhand

A couple of weeks ago, in partnership with Deep Dive India,  I had taken a group of nature lovers from Bengaluru to the Himalaya for a geology outreach week. We traveled across a section of the Lesser Himalaya up to the town of Dharchula, and then headed north along the Kali valley and then the Dhauliganga valley to the area around the Panchachuli Glacier from where the river Dhauliganga (Darma river) emerges. The picture on the left shows our group at an outcrop of high grade metamorphic rocks. Picture credit: Asha Kini.

The participants were a mix of IT professionals, Chartered Accountants and Business Management executives. And they were an enthusiastic bunch. This was my first Himalaya outreach attempt and I was a bit nervous. But these people made my job much easier with their curiosity and active participation.

The map below shows our route in red.

Source: Geology, Structural and Exhumation History of the Higher Himalayan Crystallines in Kumaon Himalaya, India- R.C. Patel et. al. 2011

During our journey towards Dharchula and ahead, we drove across and learned about 'Klippen'. Beginning about 23 million years ago and continuing until around 15 million year ago, large faults (thrust faults) moved sheets of the high grade metamorphic Greater Himalaya and the oldest rocks of the Lesser Himalaya southwards, and placed them above lower grade metamorphic rocks of the Lesser Himalaya. Subsequently, erosion removed portions of these thrust sheets, leaving behind outliers or islands (Klippen) of these high grade rocks surrounded by the lower grade Lesser Himalayan rocks. We traveled across the Almora, Askot and Chiplakot klippen on our way to the start of our trekking point, which was north of Sobla. The map above shows the Chiplakot klippen surrounded by Lesser Himalayan rocks. 

Dharchula is situated on the low grade metamorphic rocks of the Lesser Himalaya Sequence. A little north of this town, we crossed into the Chiplakot Crystalline Belt (klippen), which is a  high grade metamorphic belt correlated with the  Munsiyari Formation (see map).  The Munsiyari Formation is considered the oldest unit of the Lesser Himalaya Sequence, made up of rocks metamorphosed to a higher grade. It contains the oldest rocks in the Himalaya, a very characteristic augen gneiss (named after the eye shaped clusters of quartz and feldspar), dated to 1.9 billion years.The Chiplakot Crystalline Belt and the Munsiyari Formation rocks both formed by extensive magmatism that was taking place along the Indian northern continental margin in the Paleoproterozoic (~1.9-1.8 billion years ago). These magmatic events were triggered by converging continental blocks, their eventual collision and suturing leading to the formation of a supercontinent known as 'Colombia'.

Just north of Sobla, we encountered the Greater Himalaya. The Main Central Thrust, known locally as the Vaikrita Thrust (VT), places these rocks on top of the Lesser Himalaya Sequence. We remained in this rock group for the rest of the trip. The Greater Himalaya in this area are made up of garnet to sillimanite grade gneiss, mica garnet schists, and migmatites, intruded by leucogranite sills and dikes. These leucogranites formed by the partial melting of buried Indian crust between 24 million and 16 million years ago. The picture, taken near Baaling village,  shows a leucogranite intruding gneiss. Arrows point to fragments of host rock entrapped in the intrusive magma.

Near Dugtu, we caught glimpses of the Tethyan Sedimentary Sequence high up on the ridges to the east and north of the village. And we found boulders of conglomerates and sandstones dislodged from these Tethyan rocks in small streams joining the Dhauliganga river. We also did a memorable walk along the banks of the Dhauliganga river right up to the point it emerges from an ice cave at the snout of the Panchachuli Glacier.

All along our route we stopped for geology observations at selected locations where lithologic breaks, rock folding, and fault zones could be seen. I gave the group small puzzles to solve, wherein they had to use their powers of observation and reasoning to come up with answers on the type of rocks, the sources of pebbles in streams, and differences between river and glacial deposits. In the evenings, informal discussions continued over piping hot delicious meals of roti, subzi, dal, and rajma.

I won't write in detail about the geology of this region, since I have covered it in an earlier post that I wrote when I visited this region two years ago. Please read that post titled 'Chasing the South Tibetan Detachment'.

I will make one addition to the geology covered in that post. Just north of Baaling village there is a sudden change in lithology. High grade gneiss, migmatites and leucogranites, formed at temperatures between 750-800 deg C, are overlain by lower grade metamorphic rocks (400-500 deg C) made up of slates, phyllites and greenschists (minerals like biotite, chlorite and actinolite). These lower grade rocks are locally named Budhi Schist. I could not see the contact between the two lithologic groups since the hillsides along the trail was covered with rubble and forest patches. The change seems to occur a few hundred meters north of Baaling.

I had earlier put this down to a continuous change in pressure temperature conditions within the Greater Himalaya Sequence. But walking across the lithologic transition one can notice the steep change in pressure temperature conditions as evidenced by the different mineral assemblages of the rocks, the absence of significant leucogranite in the lower grade rocks, the presence of dilation and en echelon fractures (evidence of stretching and tensile forces) in this zone, and the strong contrast in folding style between the two rock groups. Folding in the high grade rocks (upper pic) is manifest as ductile flow of dark and light colored mineral domains into wavy,  sigmoidal patterns, rootless isoclinal folds (light or dark colored mineral domains contorted into isolated folds) and ptygmatic folding of quartz-feldspar rich layers (the more competent quartz feldspar layers gets contorted into tight chaotic folds,while the softer surrounding layers flow around it) . In contrast, the strata in lower grade rocks show tight isoclinal and recumbent folding (outlined in  yellow) which can be traced over tens of meters. This indicates that the two rock groups were deformed at different depths under different rheologic conditions.

These abrupt changes in lithology and presence of extensional stress indicators strongly suggest that this transition is bracketed by a northerly dipping ductile shear zone (deeper crustal equivalent of a fault zone along which rocks are deformed and displaced) which separates lower grade hanging wall rocks (block above fault plane) formed in shallower levels of the crust from deeper crustal level and higher grade footwall rocks (block below fault plane). Lower grade hanging wall rocks juxtaposed against higher grade footwall rocks implies normal faulting.

Ideally, shear zones need to be recognized on structural criteria, i.e. the appearance of oriented structures in the rock fabric that indicate the sense of movement. Not having the required structural geology skills, I couldn't document accurately the shear sense (direction of displacement), but previous work carried out on this shear zone shows fabrics indicating a phase of top to the north-northeast normal shear, which means that the hanging wall rocks have been displaced downwards in a northerly direction. 

In the Central Himalaya two strands of the South Tibetan Detachment ( a network of extentional or normal faulting) have been recognized. The shear zone at Baaling likely represents the structurally lower strand of this fault system. The upper strand of this fault zone is present north of Dugtu village and brings into contact unmetamorphosed sediments of the Tethyan Sequence in the hanging wall with lower grade metamorphic rocks (Budhi Schist) in the footwall. 

I'll post below a few pictures of the landscapes around Naagling and Dantu villages. People of the Bhotiya tribes live in this region. We were at about 10,000 to 11,000 feet ASL. These villages  are abandoned for the winter as inhabitants move to lower altitude towns like Dharchula to spend the cold season. People start migrating back in the month of May. When we arrived, only a few families had made their way back. As a result, most villages had an empty feel around them.

1) High grade metamorphic massifs of the Greater Himalaya seen from Naagling.

2) Early morning sunshine hits Dantu Village.

3) Beautiful earthy homes and icy ranges in the background seen at Dantu.

4) Panchachuli Peaks seen from Dantu.

5) Village Goe basking in the sunshine.

6) Golden hues in the countryside around Philum village.

7) The Lassar Yankti valley (tributary of Dhauliganga) seen from Baun village looking north.

8) The picture postcard Baun village.

 9) Realm of the shepherds. Lush meadows with the Greater Himalaya looming all around. Near Baun.

10) Explaining the origin of the Himalaya to the Geo group. Picture credit: Samir Kher.

11) And.. that's me standing at the snout of the Panchachuli Glacier. You can see the river Dhauliganga emerging out of an ice cave. Picture credit: Prakash.

Overall, it was a great learning experience for me. And from the feedback I got, all the participants enjoyed it thoroughly too.

I will be doing this again!

Thursday, May 9, 2019

Links: Petroglyphs, Language, Urban Groundwater, Dams

Some interesting articles I came across past few days.

1) Pleistocene Rock Art in India- New York Times covers the discovery of ancient rock art (40k-10K yr old?) carved on laterite plateaus of Ratnagiri District, S. Maharashtra. Good to see credit given to the stellar work of two amateur archaeologists Sudhir Risbud and Dhananjay Marathe.

Link: Ancient Rock Art In The Plains Of India.

2) Language Evolution- Linguistic analysis suggests that the Sino-Tibetan language family originated about 7200 years ago among millet farming communities in northern China.

Links: Paper - Dated language phylogenies shed light on the ancestry of Sino-Tibetan.
Summary - Origin of Sino-Tibetan language family revealed by new research.

3) Urban Groundwater- This is an issue that is gaining importance as cities in India grow and municipal water supply from surface reservoirs becomes inadequate. S. Vishwanath crunches some numbers on the ground water potential of the shallow aquifer underneath Bengaluru. It comes to more than hundred billion liters! Similar situations exist underneath other Indian cities as well, but urban groundwater has been a neglected area of study. More quantitative understanding of aquifers is needed along with a focused effort to recharge ground water.

Link:  Revisiting The Shallow Aquifer

4) Environmental Implications of Pancheshwar Dam, Uttarakhand - A review in Current Science of environmental concerns regarding the proposed Pancheshwar Dam in Uttarakhand implies that critical aspects of seismicity, slope instability, and high sedimentation rates have not been addressed in detail during the planning stages in the environment impact assessments carried out so far.

Link: Environmental implications of Pancheshwar dam in Uttarakhand (Central Himalaya), India.

Tuesday, April 30, 2019

Eastern Ghats- The New Kid On The Block

We who live in the Deccan Volcanic Province in and near about the Western Ghats generally look down upon the Eastern Ghats. Call them the poor man's mountains. Point out that the Eastern ranges have a more gentle topographic profile than the Western ranges. We smirk at the lack of spectacular escarpments, narrow gorges and the mesas and pinnacles.

But, when it comes to geology, the Eastern Ghats more than holds its own. In fact, it has a much more complicated and interesting geologic history than the Western Ghats, at least the Deccan Volcanic part of the Western Ghats.

The Deccan Volcanic part of the Western Ghats is an elevated plateau which formed by the piling up of lava 66 million years ago and which since has been dissected by rivers, forming gorges, narrow valleys, and high relief. The edge of this plateau is the Western Ghat escarpment. The Eastern Ghats on the other hand is an ancient orogenic belt which formed by the collision between crustal blocks, resulting in the formation of fold mountains.

The map below shows the broad geology of the Eastern Ghat with the inset showing its location within the Indian continent.

Source: Relative Chronology in High-Grade Crystalline Terrain of the Eastern Ghats, India: New Insights: Samarendra Bhattacharya, Rajib Kar, Amit Kumar Saw, Prasanta Das 2011.

The Eastern Ghats is a Late Archean to Proterozoic age crustal block that has evolved through long and multiple episodes of magmatism, metamorphism and deformation.  It contains rocks ranging in age from 2. 9 billion years to 900 million years old. The rocks have some of the coolest names in petrology; charnockites and enderbites, khondalites, anorthosites and syenites along with granitic rocks and  sedimentary rocks like quartzites. Charnockites (and enderbites) and khondalites are granulite grade metamorphic rocks, i.e. they formed at very high temperatures of around 900-950 deg C by transformation of older igneous and sedimentary rocks respectively. Anorthosite is an igneous rock made up almost entirely of plagioclase feldspar. Syenite is also an igneous rock containing potassium and sodium rich feldspars with no or little quartz.

The interesting part is that the Eastern Ghat block was not part of India when these rocks formed. It may have been an independent block in the Archean (more than 2. 5 billion years ago), but at some point it became part of a larger block that is now the Antarctic continent. This region then underwent magmatism around 1.7-1.6 billion years ago, an episode of granulite metamorphism around 1.6 billion years ago in its southern regions, followed by sedimentary basin formation around 1.3 to 1.2 billion years ago. These sediments were then buried, intruded by magmas like syenites,  and subjected to another episode of granulite grade metamorphism around 1.2 to 1 billion years ago. This last episode of metamorphism and deformation was a result of continental movements and collisions related to the formation of the Rodinia Supercontinent.

When did the Eastern Ghats become part of India? Geologists have timed that event to around 500 million years ago, part of the assembly of Gondwanaland.

How did they figure that out? When the Eastern Ghat terrain collided with India in the Bastar region, it caused the Baster region crust to be buried to great depths resulting in the partial melting of that crust. Radiogenic dating of minerals titanite and zircon, which formed in these new melts, give an age of around 500 million years to this melting event.

I love it when these big ideas are depicted in simple and clean diagrams. Below is a graphic that shows the separation of the Eastern Ghat terrain from its conjugate Antarctica block called the Rayner Complex.

Source: Eastern Ghats Province (India)–Rayner Complex (Antarctica) accretion: Timing the event- Pritam Nasipuri, F. Corfu, and A. Bhattacharya 2018

Two scenarios are shown. The upper panel shows a composite Eastern Ghat Province-Rayner Complex colliding with the Greater Indian landmass around 500 million years ago, followed by a breaking away of the Rayner Complex. The lower panel shows that the Eastern Ghat Province had broken away from the Rayner Complex by 800 million years ago. It then collided with India around 500 million years ago.

The Indian continent was put together by the collision and welding of several smaller continental blocks, namely Dharwar, Aravalli, Bundelkhand, Bastar and Singbhum. This assembly took place between 2 billion and 1 billion years ago.

The Eastern Ghat block was the last to join India. As recent work suggests, as late as 500 million years ago.

Sunday, April 14, 2019

Human Evolution: Stories From SE Asia

Some recent finds from SE Asia are adding detail to the complex story of human migration and population interaction, and putting a much needed spotlight on the varied geographies and ecology in which human evolution took place.

1) Anthropologist John Hawks writes about the significance of the newly reported Homo luzonensis from the northern island of Luzon in the Philippines. This hominin appears to be small bodied like the 'Hobbit' (Homo floresiensis), which lived about 700 km to the south on the island of Flores. The fossils are at least 50,000 years old and their presence suggests that SE Asia was colonized several times by different hominin populations. How they were related to each other is currently an open and actively debated question.

Link: New species of hominin from Luzon.

2) Denisovans were an archaic group of hominins who diverged from the Neanderthals more than half a million years ago and lived over wide swaths of Eurasia and SE Asia. They interbred with more recent humans entering these regions, beginning about 60,000 years ago. Living Eurasians and Papuan people carry small amounts of Denisovan ancestry. A recent genetic analysis suggests that at an early stage in their history the Denisovans split in to two or three distinct groups, which then genetically diverged from each other. Papuans carry evidence of intermixing with these different Denisovan lineages.

Link: Multiple Deeply Divergent Denisovan Ancestries in Papuans (paper)
Summary: Ancient DNA reveals new branches of the Denisovan family tree.

3) Some of the oldest cave art has recently (2014) been found in Indonesia from the southern part of Sulewasi Island. They are estimated to be around 35,000 to 40,000 years old. A nice summary in Smithsonian Magazine details the discovery. Art forms of this antiquity from Indonesia suggests that a simple story of a singular origin of human symbolic thinking is not tenable anymore. 

Link: A Journey to the Oldest Cave Paintings in the World.

Saturday, March 30, 2019

Palaeontology: Some Recent Spectacular Fossil Finds

Sharing some news on exciting fossil discoveries of the recent past:

1) Early animal evolution is a topic that continues to fascinate. A fossil rich sedimentary deposit from China dated to about 518 million years ago reveals exquisitely preserved soft bodied animals of the early Cambrian. This find, termed the Qingjiang biota, compliments the well known Burgess Shale of Canada and the Chenjiang site in China. It contains representatives of early cnidarians (related to corals), comb jellies, sponges, and many other creatures, and is helping paleontologists answer questions about the evolutionary relationships and timing of branching of animal groups.

Link: Spectacular new fossil bonanza captures explosion of early life.

2) Before the early Cambrian diversification of animals, is fossil evidence of the roots of some animal lineages, contained in the Ediacaran biota of late Neoproterozoic age ( 600-542 million years ago). At one site in S. Australia, a farmer is conserving a rich Ediacaran fossil site, turning it in to an outdoor research museum.

Link: This Australian farmer is saving fossils of some of the planet’s weirdest, most ancient creatures.

3) A 4 foot sedimentary layer in South Dakota contains a jumble of fossils of animals and plants. This 'event deposit' formed instantaneously from material gathered and dumped by a tsunami triggered by a large meteorite crashing into the Yucatan Peninsula, Mexico. Readers will recognize this! It happened 66 million years ago and resulted in the end Cretaceous mass extinction.

Link: Fossil Site Reveals Day That Meteor Hit Earth and, Maybe, Wiped Out Dinosaurs.

..and there is a longer article in the New Yorker on this fossil site and the hard work paleontologists have put in to tease out its secrets..  (thanks to Hollis for the reminder! ).

Link: The Day The Dinosaurs Died

Happy reading!

Saturday, March 23, 2019

Two Short Talks - Deccan Basalts And Geology

My friend Milind Sathe has started an arts and science outreach initiative for children named Khula Aasmaan (Open Sky). He asked me if I could give two short talks, one on my career path and experiences in geology, and the other on Deccan Basalts.

We went to a nearby hill to shoot the videos. An abandoned quarry and the basalt rock made for a pretty and relevant backdrop to the video.

Here are the links. Email subscribers who can't see the embedded video can use the permanent link to go to the Khula Aasmaan web pages for access.

1) Link- Deccan Basalts: Eruptions, mass extinctions, western ghat escarpment, ground water properties.

One correction. I mention that India broke away from Africa about 100 million years ago. It was earlier, beginning about 160 million years ago.

2) Link- Geology: My career pathway and broad interests.

Hope you like them!

Monday, February 25, 2019

The Geology Of Mumbai

Last Saturday I was fortunate to be given a tour of the construction site of  Mumbai Metro Line 3 near Siddhivinayak Temple in Dadar, Mumbai. There, we descended about 100 feet to the floor of an enormous pit, and then traveled south along a tunnel for a kilometer towards Worli, right up to where the Tunnel Boring Machines (TBM) were at work.

It was a fantastic experience.

Geology is not a term you would normally associate with the concerns of a bustling metropolis like Mumbai. Yet, at this enormous construction site, it is at the heart of operations. Progress very much depends on understanding the subsurface rock layers. Their thickness, strength, orientation, and water bearing capacity, pose engineering challenges that need to be understood and solved before tunneling can proceed safely. Far from just being an esoteric pursuit that delves into the earth's dusty past, at this site, every thump of the giant TBM rams home the relevance of geology in our day to day lives.

A friend asked me whether the rocks that the TBM's are encountering in Mumbai are any different from those under Pune. Metro construction has started in Pune too, but only one section about 6 km long will be underground. One of the reasons given for avoiding long underground stretches in Pune is that the rock type is very hard basalt.

Mumbai geology is somewhat different from Pune. I did not see any rock during my Metro visit since the pits and the tunnels had already been lined. But I do have a fair idea of the geological history of Mumbai area.

Like most of Maharashtra, Mumbai too is part of the Deccan Volcanic Province. This enormous area covered by mostly basalt lava formed between 68 million and 60 million years ago, from Late Cretaceous to Early Paleocene times. The bulk of the volcanism, about 80% of it, occurred between 67 million and 66 million years ago, within a time span of a few hundred thousand years. This big spurt of volcanism overlaps the mass extinction that took place at 66.03 million years ago. The main cause of this extinction is the environmental degradation resulting from a large meteorite crashing into what is now the Yucatan Peninsula of Mexico. A lively debate has now broken out on how much did Deccan volcanism contribute to the mass extinction.

At this time the Indian continent was located far south of the equator. The Mumbai region was located around 25 degrees south of the equator. The map below shows in grey the distribution of the Deccan Volcanics in context to the other major geological provinces of India. Insets show the progressive separation of India from Madagascar at 88 million years ago, and later from Seychelles at 65 million yeas ago. The black region in the right inset are the Deccan Volcanics with the smaller fragment being Seychelles.

Source: Sheth H.C. 2007

By 65 million years ago the western margin of the continent began to split apart and a chunk which became Seychelles broke and moved away from the Indian continent.  North south oriented fault systems along the western margin of India caused blocks of crust to subside westwards. The region around Mumbai would have been at sea level by around 64 million years ago. Eruptions had ceased over most of the Deccan Volcanic Province.

A map showing the major tectonic elements of the Indian western margin and the Mumbai area is shown below.

Source: Sheth H.C. 1998

In the Mumbai region though, volcanism continued for the next few million years under conditions which imparted to Mumbai its peculiar geological character. This volcanism differed from the rest of the Deccan Province. 

First, the lava composition was more 'evolved'. The Deccan Province is made mostly of basalt, which is an igneous rock rich in iron, magnesium and calcium silicate minerals. However, in the Mumbai region, besides basalt, other lava types known as rhyolites and trachytes erupted. These lavas are more silica rich and contain the mineral quartz (silica dioxide) and other sodium and calcium silicate minerals.

Secondly, since this region was at or near sea level, some of the volcanism took place under water forming characteristic pillow like lava structures. Volcanism over the rest of the Deccan Province took place in subaerial conditions above sea level. 

Thirdly, the meeting of hot lava and cold sea water caused steam explosions. This resulted in the formation of large amounts of lava rubble which when consolidated forms a rock known as volcanic breccia. Explosive volcanism also generated ash which was deposited in layers known as Tuff. 

Volcanism was also sporadic. In these interludes, in coastal embayments and lagoons, mud and silt was being deposited. Fossils of turtle, frogs, crocodiles, molluscs and various types of plant remains have been recovered from these sediments. A resumption of volcanism would bury these sediments under lava. Repeated episodes of volcanism and sediment deposition has resulted in the formation of a rock sequence made up of different lava types alternating with thinner layers of sedimentary rock (intertrappean sediments). These events took place between 64 million and 62 million years ago. 

The volcano-sedimentary environments of Mumbai are shown in the schematic below. 

Volcanism continued until around 60 million years ago. The famous Gilbert Hill in Andheri, made up of basalt columns, formed by polygonal cracking of lava as it cooled, has been dated to around 60 million years old. This makes it probably the youngest volcanic activity of the Deccan Province.

Finally, the Mumbai rock sequence differs from the rest of the province in its structural disposition. Whereas in the rest of the Deccan region the lava flows are nearly horizontal, in the Mumbai region they show a pronounced tilt (dip) to the west. This feature is known as the Panvel Flexure, as it becomes more pronounced beginning just around the town of Panvel, a few tens of kilometers east of Mumbai (see right panel of tectonic map posted earlier).  

Many explanations have been given for this tilt. One theory is that it resulted from a bending of the lava flows as the crust to the west of Mumbai subsided upon cooling and due to the weight of sediment. Another explanation ties the structure to continued movement along west facing faults which initially formed  during continental breakup. A third hypothesis is that the flexure formed by tilting of the crust along an east facing listric (curved plane) fault now located under the Arabian Sea to the west of Mumbai. Such faults commonly occur along continental rift margins, where the crust in being pulled apart. This last scenario is shown below.

Source:  Sheth H.C. 1998

This tilting occurred after volcanism and sedimentation ended, later than 60 million years ago. The result is that the entire package of volcanic flows and sedimentary strata dip westwards. This Mumbai stratigraphy is shown in the cross section. 
After volcanism and crustal tilting, the next recorded geologic history is from much more recent times, in fact just a few thousand years old.

Early travelers and geographers describe Mumbai not as one land mass, but a collection of seven islands separated by shallow tidal inlets and marshland. This particular configuration of land and sea, is in geological time quite a recent phenomenon, forming  just about 10,000 years ago. Before that, during the Pleistocene ice age, sea level was about 100 meters lower than present. The Mumbai area and almost the entire continental shelf to the west would have been land. The earliest humans to have entered India about 70,000 years ago, following a coastal route from the Arabian Peninsula, would have walked on the now submerged land to the west of Mumbai.

During this sea level low, rivers traversing the Mumbai region would have met the sea tens of kilometers to the west. Sea level began to rise about 15,000 to 12,000 years ago at the end of the ice age. In the next few thousand years, rising sea level inundated the continental shelf and various river valleys, forming Panvel Creek, Thane Creek and Vasai Creek to name a few of the creeks in this region. These creeks are all drowned river valleys of the Pleistocene.

Sea level peaked about 3,000 to 4,000  years ago. The position of the shoreline at this time was about 2 meters higher than present. Beach rock deposited during this time is present a few hundred meters inland at Madh Island. This shelly rock is locally known as Karal. By this time Mumbai became an island locale, with topographic highs remaining as land, with low lying areas becoming marshes and shallow tidal channels.

This then is the geological inheritance of the city of Mumbai,a legacy of  volcanism and sedimentation in Paleocene times and a pronounced sea level rise during the Holocene.

The rock outcrops that tell this story have all but disappeared under the onslaught of urbanization over the last few decades. As modern Tunnel Boring Machines enter Mumbai's underworld, a few pages of this history are again being discovered.

The Mumbai Metro website, in their newsletter Metro Cube, has put up a series of ten articles titled 'What Lies Beneath The Earth' (issues February 2018 - December 2018). This series summarizes the geology beneath each of the sections of the metro route. It is an excellent resource. A perusal of this series reveals that the tunnels are mostly encountering Paleocene age hard basalt and softer breccias and tuff layers. Only at some place are sedimentary layers being intersected. This though is in contrast with the geology underneath Pune. There, only hard basalt will be found.

It is imperative that we save some of this treasure for our citizens to appreciate. Wouldn't it be wonderful if at a few of the underground metro stations, exposed rock panels and a museum like display of recovered rock cores along with a short history of Mumbai geology is displayed? It would make Mumbai's unique geology accessible to citizens and help all of us forge a more enduring connection with our natural heritage.

Thursday, February 7, 2019

Is Mount Kailash The Oldest Mountain In The Himalaya?

No. It is not.

Although, according to this tweet it is.

The person tweeting as CBG-san (@OnlyNakedTruth) uses Pranay Lal's book Indica: A Deep Natural History Of The Indian Subcontinent as the source (page 268-269), and also refers to an analysis done on Mount Kailash rocks. I could not make out the source of the table of analysis. They show the age of Mount Kailash Formation as ranging from around 30 million years to around 10 million years old.

Let me get one technical point out of the way. Geologically,  Mount Kailash is not in the Himalaya. It is part of  the Asian continental plate. These mountains are known as the Transhimalaya. Locally, these ranges are also called the Gangdese Shan. The Himalaya are the deformed and uplifted rocks of the Indian plate. This is a quibble though. I appreciate that the larger point is whether the rocks of Mount Kailash were uplifted very early during the India-Asia collision process.

The Mount Kailash range is made up of thousands of feet of sediment of the Kailash Formation, sitting on granitic rocks of the Gangdese batholith. These granitic rocks formed within the southern edge of the Asian continent. As the Indian plate dived underneath Asia, magmas formed deep inside the Asian plate. Blobs of this magma rose and solidified in the subsurface of the Asian continent forming the Gangdese batholith (a large body of granite). This magmatism took place between 100 million and 45 million years ago .

There are new dates available now for the Kailash Formation, which was deposited on top on this granite. Radiogenic dating of lava flows inter-layered with sediment indicates that the Kailash Formation accumulated between 26  million years and 21 million years ago.

This timeline indicates that around 26 million years ago the southern margin of the Asian continent and the India-Asia collision zone subsided. The nature of the sediments indicates that a long chain of lakes formed in narrow depressions. These lakes were receiving sediment eroded from elevated ranges to the north. Organic matter accumulating in these lakes have been transformed into coal layers. There is also an absence of pollen grains of temperate or high-altitude plant species. This sediment composition points to a lower elevation and warmer water setting of these lakes, which geologists speculatively place between 1000 m to 3500 m. Presently,  Kailash Basin sediments are exposed at altitudes greater than 6000 m.

The graphic below shows the depositional environment of the Kailash Formation

Source: DeCelles 2016- Oligocene-Miocene Great Lakes in the India-Asia Collision Zone

The rocks that make up Mount Kailash are younger than 26 million years. They formed nearly 30 million years after the collision of the Indian and Asian continents.

High topography already existed along several belts in the collision zone before 26 million years ago.

First, the southern margin of the Asian continent must have been elevated perhaps as early as 45 million years ago, since this terrain was the source of sediment into the Kailash Basin. More direct methods of estimating elevation also suggest high elevations in this region by  35-40 million years ago. The ratio of the two isotopes of oxygen (O18 to O16), bound in calcium carbonate minerals,  is temperature dependent. Measurements from southern Tibet indicate paleo-elevations of around 5000 m by 35 million years ago.

Second, the zone of India-Asia collision (Indus-Tsangpo Suture), and the Tethyan Himalaya belt (the northernmost Himalayan ranges) had been uplifted by 45-40 million years ago. The evidence for this comes from the composition of foreland basin sediments to the south. As India collided with Asia, a depression formed in front of the rising mountain chain. This foreland basin (which later was uplifted to form the Siwalik ranges) began receiving sediment derived from the erosion of the newly uplifted Himalaya.

Eocene age (45-35 million years) sediments in this foreland basin contain rock fragments and minerals inherited from the Indus-Tsangpo Suture and the Tethyan Himalaya. Younger foreland sediments of Early Miocene age (between 24 and 15 million years) contain fragments of the Tethyan Himalaya as well as the newly emerging Greater Himalaya.

The timing of uplift of the Greater Himalaya is also hinted at by geochronology. The radioactive clock inside muscovite (a type of mica) starts ticking below around 350 C. Clocks in other minerals like zircon (zirconium silicate) and monazite (rare earth phosphate) are set at higher temperatures, at 700 C and 600 C respectively. A sample may contain all three of these minerals, as Greater Himalayan granites and gneisses often do. Their dates of formation track a cooling history, as the rock is uplifted from deeper crustal levels to shallower regions.

Such work by geologists have shown that the Greater Himalaya were exhumed between 21 million and 16 million years ago. Exhumation in such collisional settings is linked to rapid surface erosion and formation of topography. Mike Searle's book Colliding Continents: A geological exploration of the Himalaya, Karakoram, & Tibet describes these different methods for assessing rock ages and cooling histories.

A different geochronology method known as fission-track dating,  that measures radiation damage in crystals of zircon (zirconium silicate) and apatite (calcium phosphate) to estimate when the rock cooled below 200 C to 100 C indicates that the Kailash Formation was uplifted later than 17 million years ago.

Ranges on the Asian continent (Gangdese Shan), as well as the Indus-Tsanpo Suture in the collision zone and the Tethyan Himalaya belt to the south on the Indian plate, are older than Kailash. The Greater Himalaya was uplifted around the same time as the Mount Kailash Formation.

This evolution of topography in the Himalaya and along the southern margin of Asia is shown in the schematic below. Orange arrows indicate transport of sediment from source to basin. Black arrows show fault motion.

I've always been struck by a disconnect in Pranay Lal's book. His end notes are detailed and summarize the state of research fairly well. However, there are many basic mistakes in the main text. I made a list of the many geology errors in his book in an earlier post titled Book: Indica- A Deep Natural History of the Indian Subcontinent.

It is simply not accurate to say that Mount Kailash is the oldest mountain in the Himalaya. The southern margin of the Asian continent was elevated soon after the India-Asia collision, probably by 45 million years ago. But the Kailash Formation did not rise until after 17 million years ago. It is a much younger component of the Gangdese Shan or Transhimalaya.  Mount Kailash's classic pyramidal shape evolved during the ice ages of the Quaternary Period beginning 2.58 million years ago, when glaciers dug out valleys and cut back slopes, forming smooth sided and sharp edged peaks.

Wednesday, January 30, 2019

Ganga Water: Future Availability

I just read through M. Rajshekhar's excellent three part series on the Clean Ganga Mission.-

Part 1: Modi’s clean Ganga plan hinges on private companies tackling sewage. Will it work?

Part 2: Modi said he would revive Ganga but his government is doing the opposite by reviving dams

Part 3: Three ways in which the Modi government is ruining the Ganga

Some thoughts about the infrastructure projects in operation, and those planned..

First, the Inland Waterways project will need water to be released from upstream dams to maintain a certain water depth in the navigable channel in the summer months. Second is the River Linking Project, based on the rationale that there is excess water in the Gangetic system. Besides the Ken-Betwa  link in Madhya Pradesh, which will reduce some of the water flowing into the Ganga via the Yamuna, there is the more grandiose plan of transferring Ganga system water during the summer months to the southern Peninsular rivers. And third, the Uttarakhand dam building projects will try to keep as much water locked up behind dams for power generation in the summers.

Each of them will be competing for a limited amount of Ganga water during the same time of the year. This allocation problem will lead to water disputes, both, among the managers of these projects, and across different States. As a result, these projects are unlikely to operate optimally.

I haven't come across an official water budget analysis projected 50 years into the future, that takes into account the impact that these three projects will have on each other.

Thursday, January 10, 2019

Cracks In A Rock And The Western Ghat Escarpment

A friend sent me this picture of a section of the Western Ghat escarpment. It is taken from Jivdhan fort, looking north towards the hook nose of Naneghat. This location is about a hundred odd kilometers west-north-west from Ahmednagar town. Naneghat was a mountain pass for travel between the coastal plain and the plateau.

Photo credit: Rajesh Sarde

The yellow bloom makes a pretty contrast with the grey basalt. My geology eye was drawn towards something else; a suspiciously straight flowing stream, which I have highlighted with an arrow.

I looked at a satellite imagery of this location and the stream is seen following a fracture zone (black arrows)  that cuts across Jivdhan fort as well. The escarpment area is riddled with such fractures. They occur as north-south, northwest-southeast, and northeast-southwest (brown arrows) trending sets.

These fractures are regions of shattered rock. That zone erodes away quicker. Water flowing in the linear depressions that form enhance this topographic difference and eventually cut deep straight valleys.

Large fractures or cracks along slopes causes slabs of rocks to cleave away from mountain sides. Slopes retreat due to such rock falls. A large crack is seen in the picture just a few feet away from where my friend took his photograph. At some point a portion of rock will detach itself and Jivdhan fort will become that much narrower.

Look at the zoomed out satellite imagery of this area. The plateau edge has been fragmented into isolated hillocks, mesas and pinnacles by enhanced erosion along fractures oriented in various directions. You can follow some of these fractures (white arrows) to the straight edges of the escarpment suggesting that slab breakoff has played a role in shaping the morphology of the cliff line.

Such fracture systems not only have formed a landscape of mesas and pinnacles but have caused the Western Ghat escarpment to retreat eastwards for at least tens of kilometers from its original location. The escarpment is a legacy of the breakup of the western margin of India with Seychelles at the end of the eruptions of the Deccan Basalts. At that time in the Paleocene (~60 million years ago), continental stretching caused the formation of a series of north-south oriented faults which sloped (dipped) to the west. The westerly block of each of these fault sets sank, created a staircase like crustal structure descending towards the west, with west facing cliffs. The Western Ghat escarpment would have been the easterly most of these cliffs.

See the schematic below which shows this staircase crustal structure of the western margin of India.

The red portion would have been the original extent of the Deccan plateau. It has retreated eastwards over several millions of years. As a result, the coastal plain became progressively broader. Give a thought to the humongous amount of rock that has been removed by erosion.

Along the west coast the erosional  retreat has not wiped clean all evidence of the original plateau. From the coastal plain rise isolated ranges and mesas. The hill station Matheran, where people go to catch the cool wind and a spectacular view, is a fine example.

See the satellite imagery below.

Matheran was where the plateau edge and escarpment once was. It has now moved eastwards (arrows) leaving behind an erosional remnant,  a splendid outlier of the Deccan plateau rising abruptly from the plains.

Let's end with a 3D view of the escarpment along the Jivdhan-Naneghat area.

If you take a flight out of Pune to Delhi, the plane will fly a northerly route parallel to the plateau edge for the first 20-25 minutes of your journey. The Western Ghat escarpment appears as it does in the tilted perspective above, a sinuous line of majestic black cliffs, testimony to the forces of volcanism, continental breakup, and erosion.

A section of this stunning landform deserves to be included in our National Geological Monuments list.

Monday, January 7, 2019

Human Evolution: Focus On Africa

In a lecture delivered to the American Society for Human Genetics, paleo-anthropologist John Hawks gives a lucid summary of the African record of human evolution.  The divergence of the hominin lineage from other apes took place in Africa between 5 and 10 million years ago. Hominins began dispersing out of Africa in pulses beginning 2 million years ago. The vast majority of hominins though continued to live and evolve in Africa. Yet, popular stories of human evolution focus on people leaving Africa and colonizing the world. What has been happening in Africa all along gets sidelined in this narrative.

The “out of Africa” slogan came from well-intentioned scientists. They thought that by emphasizing the idea of an African origin, they would send a clear message that Africa had an important place in evolutionary narratives. That much is true. Africa was the center of human origins. But “out of Africa” stories focused almost exclusively on dispersal, as if it were an exodus. Africa’s place in these stories was the place that people left.

John Hawks refocuses our attention on the African fossil and genetic record that tells us that Africa always has occupied a central place in our evolutionary story.

He points out that this record has yielded three big insights:

First, modern humans did not originate in a bottleneck after 200,000 years ago. Our origin was much deeper in time than this.

Second, our species originated in Africa from deeply structured ancestral populations. These were much more different from each other than any human populations are today. We do not know how they interacted or which gave rise to living peoples.

Third, some of these deeply divergent populations survived in Africa until recent times. During the time of human origins, “modern” humans were not alone. 

The term bottleneck means that at some time in our past there was a drastic reduction in our population size and genetic variability.

Anyone interested in the topic of human evolution should read this article.