Friday, September 29, 2017

The Bay Of Bengal Once Touched Sikkim

See this satellite imagery of the Himalaya.  The Indian State of Sikkim occupies the region just east of Darjeeling.

The Siwaliks (green arrows) appear as a forested linear band forming the southernmost hilly terrain of the Himalaya. The hills abut against broad alluvial plains. Rivers traversing the Himalaya carrying enormous sediment load encounter a gentler gradient upon exiting the hilly terrain. A loss of stream power results in sediment being dumped in the channel, so much so, that rivers get chocked on their own sediment. As a result, channels split and bifurcate forming a braided river system. These rivers  also suddenly change course, abandoning their channel and carving out new ones. Such course changes may occur during floods or by tilting of the land by structural movements.  Over time, the deposits of these ever changing rivers coalesce to form cone shape aprons of sediments known as alluvial fans. These rivers like the Kosi and the Tista, which flow transverse to the mountain range, meet an axial river like the Ganga and the Brahmaputra flowing parallel to the mountain front. The axial river flows into the Bay of Bengal.

The Siwalik hills were once these type of alluvial fans.  Just as today, during Miocene and Pliocene times, sediment was being deposited in front of the rising Himalayan mountains. Beginning about half a million years ago or so, these ancient alluvial fans were crumpled up and uplifted to form the Siwalik ranges. Active alluvial fan formation shifted southwards to its present locus. This process continues. In a few million years, the present day alluvial fans deposited by rivers like the Kosi and the Teesta will be deformed into a newer mountain range south of the Siwaliks. The Himalaya are growing southwards.

How do we know that the Siwaliks were once alluvial fans? Geologists rely on analogy, comparing the Siwalik sediments with what is accumulating in the present day alluvial fans. They find a striking similarity. Siwaliks are made up of alternations of coarse gravel layers and finer sand and silt layers with characteristic bed orientations and structures like cross beds and rippled sand. The gravel layers are inferred to be the river channel deposits while the finer sand and silt layers are the river bank, levee and floodplain deposits. An important finding made throughout the length of the Siwalik ranges has been the paleo-current directions preserved in the rocks.  Geologists have measured the orientation of bedding and ripple marks and found out that rivers were flowing south and south east i.e. perpendicular to the mountain chain. There is no evidence of an axial river like the Ganga in these Siwalik sediments. The thinking is that such an axial river must have flowed much to the south of the region of deposition of Siwalik sediments.

And what about evidence of a delta? Where did these Miocene and Pliocene rivers meet the sea? The logical geographic place to look for a coast would be towards the east. And in fact, that evidence has come from the Siwalik sediments of West Bengal and Sikkim. In a really interesting paper published recently in Current Science, Suchana Taral, Nandini Kar and Tapan Chakraborty describe sedimentary structures and marine trace fossils from Middle Siwalik sediments exposed along the Gish River and its tributaries in the Tista Valley. Siwalik rocks in the central and western part of the Himalaya show current structures that indicate south flowing rivers. In this easterly location however, the sediments show evidence of being deposited in a wave influenced environment. Sedimentary structures like wave ripple laminations and hummocky-swaley stratification indicate deposition in wave dominated marine bay.  Paleo-current indicators like ripple marks preserved on sandstone surfaces show a south as well as north directed current. This suggests an environment influenced by tides and north directed waves. Associated sediments show indicators of different delta environments like distributary channels, delta mouth bar and delta flood plain deposits.

Apart from current direction indicators, the sediments contain plant fossils indicative of mangrove vegetation and brackish water environments. They also contain trace fossils i.e. impressions and burrows made by creatures moving and disturbing the sediment surface. Cylindrichnus, Chondrites, Rosselia, Taenidium, Skolithos, Planolites are some of trace fossils reported in this study. The assemblage of trace fossils is similar to those reported from marine settings.

All this suggests that during the time of deposition of these Middle Siwalik sediments in Late Miocene-Pliocene times, about 5-10 million years ago, a branch of the Bay of Bengal had invaded as far north as present day Sikkim. Rivers carrying sediment from the Himalaya were debouching them in a delta and a shallow marine bay. The Sikkim Middle Siwalik strata are ancient deformed delta and marine deposits.  

A paleo-geographic reconstruction of this eastern part of these Siwalik depositional environments in shown below.

 Source: Suchana Taral, Nandini Kar and Tapan Chakraborty 2017

The  upper graphic shows the reconstructed delta and marine depositional environment. The lower graphic shows the regional paleo-geography. The pin shows the environmental location of the study area. The yellow rose diagram shows the paleocurrent directions measured in the Siwalik sediments.

Interestingly, some earlier work by geologists has shown that in Late Miocene times the Brahmaputra was flowing along a much more easterly route towards the Bay of Bengal. They used sand thickness and sand/shale ratios from wells drilled in the delta and found lobate sand bodies, which they inferred were brought in by a large river flowing from a ENE source. Their interpretation is shown in the graphic to the left (Uddin A. and Lundberg N. 1998). At the time the Shillong Plateau did not exist. The river flowed into the Bay of Bengal from the Upper Assam valley and through the Sylhet depression in to the Bengal Basin. The uplift of the Shillong Plateau in Pleistocene times forced the Brahmaputra to turn west and wrap itself around the newly emerging uplands.

Since Pliocene times, the tremendous amount of sediment being delivered by Himalayan rivers, coupled with Pleistocene sea level fall, has caused a retreat of this arm of the Bay of Bengal southwards.

In the satellite image below, based on the location of the Sikkim Siwalik deposits and other work on the Bengal Basin paleogeography, I have drawn in brown the coastline as it would have existed 5-10 million years ago. The ancient drainage systems are shown in blue. South directed arrows shows the extent of the growth of the Bengal/Bangladesh alluvial plains and delta and the retreat of the sea since then to its present location.

Pretty amazing finding.


  1. Amazing indeed. Bangladesh did not exist 10 million years ago? Is Ganges younger than 10 mil years?


    1. The eastern part which consists of uplands like the Indo Burman ranges (Chittagong hills), and the Sylhet highlands to the northeast would have existed. A central swath was marine then and has been filled up by natural land reclamation since Pliocene times. The Ganga did exist as early as 15-20 million years ago, but met the sea perhaps at a more northerly location.