This is a geology travelogue of my recent trek to the Panchachuli Glacier. This is the famous Darma Valley trek in the Dhauliganga river valley of the Kumaon Himalaya. For years, the trek began at village Sobla, about an hours drive north of Dharchula. From Sobla, it is a two to three day hike to Dugtu, which is the base village to approach the Panchachuli Glacier. However, when we went there in the first week of May 2017, a serviceable road had reached village Nagling. This cut two days of our walk. We began our trek at Nagling. It was a days walk to Dugtu. There I got a chance to look at the geology and especially search for an important fault zone I had been wanting to see. I begin this post with some geology background and then write about my observations during our walks around Dugtu.
The South Tibetan Detachment System (STDS) is an important fault zone in the Himalaya, bringing in to structural contact the Tethyan Sedimentary Sequence (TSS) with the underlying metamorphic rocks of the Greater Himalayan Sequence (GHS). It is a northerly dipping extensional or normal fault. This means that the Tethyan sediments which make up the hanging wall of the fault have moved down relative to the footwall made up of the Greater Himalayan Sequence. As the name suggests the STDS is most prominently developed in the southerly Tibet plateau like physiographic province of the Himalaya, north of the great Himalayan summits.
What is the history of the TSS and the STDS? As is the case with Peninsular India, the northern extent of the Indian plate would have been made up of Archean granite and granite-gneiss terrains representing the earliest stable crust and greenstone belts (metamorphosed and deformed volcano-sedimentary rocks). On this Archean-lowermost Proterozoic foundation were deposited successions of sedimentary packages, some intruded by igneous rocks. These range in age from the Mesoproterozoic to the Eocene. The Archean and lowermost Proterozoic rocks are not exposed anywhere in the Himalaya. The Lesser Himalaya Sequence and the Greater Himalaya Sequence are slices of crust containing the Mesoproterozoic to Phanerozoic successions which have been metamorphosed to varying degrees during Himalayan orogeny. The Tethyan Sedimentary Sequence represents late Neoproterozoic to Eocene successions which largely escaped metamorphism during Himalayan orogeny.
In the early Cenozoic, when the Indian plate impinged into Asia this Neoproterozoic to Eocene sedimentary "cover" was folded, faulted and scraped off to form an early "Tethyan" mountain range. As collision continued and as lower tiers of the Indian crust subducted under Asia, thrust faults moved slices of deeply buried and metamorphosed crust upwards. These slices are the Greater Himalayan Sequence. They are bounded by the Main Central Thrust at its base and by the STDS at the top. Concurrent with the movement of the Main Central Thrust, fault zones developed at the base of the Tethyan sedimentary cover, perhaps along the same planes of breakages that had earlier uplifted the Tethyan ranges. This fault zone evolved into the STDS.
There are different hypothesis on how important the STDS is to the evolution of the Himalayan orogen. One school of thought suggests that the extention and thinning of the crust along the detachment zone accelerated the exhumation of the deeply buried GHS and brought these deeper levels of the crust in to structural contact with the Tethyan cover sequence. Alternative scenarios argue that thrust faulting played a more prominent role in the southward propagation and exhumation of the GHS with the STDS playing only a minor role in the exhumation of the footwall GHS.
Whichever scenario is correct, there is no doubt that the South Tibetan Detachment is a major structural boundary separating two distinct lithologic terrains.
The outcrops around me during my trek where all metamorphic rocks of the Greater Himalayan Sequence. I had hypothesized that the South Tibetan Detachment and Tethyan rocks if they indeed were present in the area would be making up the summits of the ranges around Dugtu and in the Tidang area.
After days of observation I was proved right about that. I used three types of indicators to infer the presence of Tethyan sedimentary rocks high up on the summits and to recognize the fault boundary between them and the underlying Greater Himalayan Sequence metamorphic rocks.
1) Structural discordance between the Greater Himalayan Sequence and the Tethyan Sedimentary Sequence. This could be clearly seen near the summits of the ranges north and east of Dugtu.
2) Boulders of sedimentary rocks like conglomerate and planar and cross bedded sandstones in the streams draining these ranges.
3) Dilation fractures in both the phyllite grade metamorphic rocks of the Greater Himalayan Sequence and in sandstones of the Tethyan Sedimentary Sequence. This indicated the presence of an extensional stress regime. The South Tibetan Detachment is a zone of normal faulting. The crust has been broken and pulled apart by tensional forces. These stresses were felt over a broad zone and impacted the footwall and hanging wall rocks.
As I am writing up these three criteria I have to admit that my thinking about these lines of evidence was not at all clear when I started the trek. Rather, my ideas and understanding of the local geology evolved haphazardly over the days as I walked the valley and started noticing structural orientations, stream rubble and fracture patterns.
We began our trek at Nagling village. Our destination was the village of Dugtu (Lat 30.2486, Long 80.5460). We walked northwards. As Himalayan thrust sheets dip north, we were going structurally higher and higher up the Greater Himalayan Sequence. At, and ahead of Nagling, we were in a zone of partial melting and granite intrusions. High grade gneiss and migmatites were intruded by dykes and sills of granite. I'll be posting about this section separately. This high grade gneiss zone was overlain by a sequence of phyllite grade metamorphic rocks. These phyllites show tight isoclinal and recumbent folding. The internal structure of the Greater Himalayan Sequence is interesting. There is an increase in metamorphic grade from the base to the higher levels and then a decrease towards the very top.
Above the phyllite grade rocks separated by the STDS are the Tethyan sediments. I figured I would have traveled north enough, i.e. structurally high enough along the GHS to cross the phyllite zone and into the overlying Tethyans. I had an expectation that at the very least I would notice them capping some of the ranges I was going to encounter between the villages of Dugtu and northward towards Sipu.
Here is an interactive map of the area I trekked, which you can use to follow the text and check on the locations of the samples.
Day1 - The northerly walk takes a left turn as we enter the Panchachuli Glacier valley. The river Dhauliganga is a west to east flowing river in this valley near Dugtu village. We entered the village of Dugtu in pouring rain. Every mountain range was covered in clouds, and in any case the rain was heavy enough to keep us indoors for the evening.
Day 2- More rain! It happened during my last trek in the Munsiari valley too. We go stuck there for two days due to heavy rain and snow. As it happened, the rain stopped by afternoon and we could go for a short walk to the twin village of Dantu across the Dhauliganga river. The river bed was chocked with boulders of a distinct biotite-tourmaline bearing granite (Picture to the right). Both Dugtu and Dantu villages are located in phyllite grade rocks. This conspicuous granite does not intrude these rocks. Its source lies in the Panchachuli ranges, lower in the GHS. The Panchachuli Glacier has gouged it from the Panchachuli ranges and transported the debris to this valley. All the summits were still covered by clouds and I was resigned to wait it out for any further observations of the geology.
Day 3- Perfect weather. It was bright and sunny. But I hardly did any geology this day. We took a spectacular 5 kilometer walk westwards to the Panchachuli glacier. The terrain was covered by forest, shrubs and grass and higher up by ice. We walked along the lateral moraines of glaciers past. The Panchachuli glacier was much bigger during the Pleistocene ice ages and glacial deposits are piled up high in the valley. I'll be posting on these deposits too. If only I had just glanced to the east of Dugtu and looked carefully at the ice snow covered ranges!!
Day 4- Great weather again! We took a northerly course towards the village of Tidang. Our original plan was to walk up further north to the village of Sipu. However, the ITBP (Indo-Tibetan Border Police) were restricting movements of civilians in that area and we got a nod to go only to Tidang on a day trip. This is fantastic terrain. We passed through pine forests and then into a landscape of open woodlands and scrublands. We were now in the Lassar Yankti valley. The picture below shows a north facing view of the Lassar Yankti valley.
This river joins the Dhauliganga near the village of Dugtu. There were enormous mountain ranges on both sides of the valley. Here below is a view of the mountain ranges on the right bank of the Lassar Yankti near the village of Dakad. The north dipping rock faces in the foreground are Greater Himalayan Sequence phyllites. I had a feeling that if there were Tethyan sediments here they would be making up the summits of the range in the background. I was keeping my eyes peeled for anything interesting.
And soon I began noticing that phyllite grade rock fragments scattered along scree slopes showed dilation fractures (Pic to the left). These fractures occur when the crust is being subjected to tensile forces. I now strongly suspected that these upper structural levels of the GHS were close enough to the STDS to have experienced extensional stresses. The picture show a phyllite grade rock with foliation displaced along a fault (black line) and showing dilation fractures (above) and another phyllite with parallel sets of dilational fractures (below). The fractures have been filled or healed with secondary quartz.
We passed the village of Dakad (Lat 30.2756, Long 80.5291). A few hundred meters ahead I had the first of the big "aa-haa" moments of the trek. A large boulder of sandstone showing planar and cross bedding lay just a few meters aside of the trail. It must have been transported there either during a rock fall or by glaciers from high up on the ranges on the right bank of the Lassar Yankti. A few minutes ahead we came across a stream draining these ranges and joining the Lassar Yankti. In that stream near the bridge connecting to village Tidang I saw a conglomerate boulder (Lat 30.2822, Long 80.5262). Sedimentary rocks of the TSS were definitely present high up in that range. Here is a picture of the cross bedded sandstone (above) and the conglomerate (below).
Looking up towards the ranges, I could not identify a lithologic or structural boundary, but the presence of dilation fractures and sedimentary debris pointed to the presence of the STDS and the TSS high in those ranges.
Day 5- The weather Gods were kind again. We trekked westwards from Dugtu along the left bank of the Dhauliganga river towards the terminal moraine of the Panchachuli glacier. The rock walls on the left bank of the river were phyllite grade rocks. Again, I found dilation fractures in them. And in a small stream draining those ranges... another conglomerate (Pic to the right) ! (Lat 30.2471, Long 80.5181). I looked up to the summits carefully. Perhaps my viewing angle was just right or perhaps my mind was now better prepared but... there it was... a clear structural discordance between steep northwesterly-dipping rocks and the overlying more gently northeasterly-dipping rocks. I was looking at the South Tibetan Detachment Fault that had placed Tethyan sediments over the Greater Himalayan Sequence (picture below; join the tips of the arrows to trace the detachment fault).
I then looked through the valley straight towards the ranges to the east of Dugtu. Again, that same structural discordance was clearly visible in the snow capped summits. The picture below (photo credit:
Swati Pednekar ) shows this eastern range, the detachment fault (join the tips of the arrows to trace the fault) and the lithologic units.
Day 6- A trek to villages of Goe, Philam and Bon. We walked north from Duktu, crossed the Lassar Yankti river a little ahead of Dantu village and entered village Goe (Lat 30.2602, Long 80.5411) and then walked southwards. That morning I had confidently predicted that we would find sedimentary rock with dilation fractures on this trail. These villages are at the base of the ranges shown in the picture above. Although not diagnostic, there was another strong hint that these ranges had sedimentary rocks at the summits. The summit rocks have weathered into a blocky square edged pattern typical of jointed sandstones and quartzites.
And I was right! Sandstones along with low grade phyllite rocks (from the lower levels of the mountain) were being used to build walls and pavements in all the three villages. Picture on the left (above) shows a cross bedded sandstone block making up part of a wall in village Goe. And a cross bedded sandstone slab (left, below) is being used as a pavement stone for a village trail between Goe and Philam. Further south ahead of village Bon, a large stream draining these mountains contained boulders of bedded sandstones. And at a small bridge at the bottom of the valley (Lat 30.2370, Long 80.5450) I came across a sandstone block (picture below) with slickensides (black arrows) and dilation fractures (red arrows). Slickensides are striations on rock surfaces formed by frictional movement of rocks along a fault. This was a strong indicator that these sandstones were sourced from an extentional fault zone high up near the summit.
We continued walking southwards, into lower levels of the GHS. Soon, we were back in the Nagling area, in the zone of partial melting and granite intrusions.
This ended our trek in the Panchachuli Glacier area. To date, it was the most satisfying trek I had done in the Himalaya. Although the STDS was high up and I could not actually walk across it, I had hypothesized, made observations and validated my expectations of the presence of the detachment faults and Tethyan sedimentary rocks. This would be a good field exercise for students! And I am hoping this post will be used by trekkers wanting to explore and understand the geology of this area.
Day 7- We trekked to the Nagling Glacier which has carved a perfect U shaped valley. Certainly one of the most beautiful sites I have been to.
... more geology posts on glacial deposits and granite intrusions... coming soon.. !