Open Access in Current Science- A remote sensing survey of 2018 glaciers across the Himalayan arc for the time period 2001 -2010 was carried out. Change in snout position was compared. The majority of glaciers over the last ten years show stable snout positions. About 12% show retreat and only 0.9% show advancement. Himalayan glaciers are retreating though. Studies that cover larger time periods have shown that studied glaciers have been in retreat over all of the last century with the largest retreats from the mid 1970's to the late 1990's. Glaciers have been naturally shrinking since the last Ice Age ended with few reversals such as the younger Dryas and the Little Ice Age, but the past 100 years or so are of interest to us due to the impact of anthropogenic global warming.
Glacial retreat may have slowed down in the last decade and no doubt given the complex response of ice masses to their situation in a particular topographic setting and temperature changes such variations in rates of change of glacier decay will continue as the earth warms. Besides, as other water experts have pointed out , the big problem with interpreting the true significance of Himalayan glacier behavior is the lack of crucial baseline data for a) the amount of snowfall in the various Himalayan glacial source areas and b) much of the reporting of changes in glaciers present area changes and not changes in volume. The volume of ice corresponds to the volume of water held, so any assessment of damage to north Indian river supply must study volume change of ice as glacial melt contributes substantially to Himalayan river water flow. Furthermore, such data if it does exist and that collected in the future must be made public to be examined by as many experts as needed and not kept secret as has been the case with Himalayan river water data in the past. So, a lot more work in terms of basic data gathering needs to be done.
In any case such larger scale studies are useful pointers to regional trends and for pinpointing areas deserving more detailed studies.
Abstract:
The Himalayan mountain system to the north of the Indian land mass with arcuate strike of NW–SE for about 2400 km holds one of the largest concentration of glaciers outside the polar regions in its high-altitude regions. Perennial snow and ice-melt from these frozen reservoirs is used in catchments and alluvial plains of the three major Himalayan river systems, i.e. the Indus, Ganga and Brahmaputra for irrigation, hydropower generation, production of bio-resources and fulfilling the domestic water demand. Also, variations in the extent of these glaciers are understood to be a sensitive indicator of climatic variations of the earth system and might have implications on the availability of water resources in the river systems. Therefore, mapping and monitoring of these fresh water resources is require d for the planning of water resources and understanding the impact of climatic variations. Thus a study has been carried out to find the change in the extent of Himalayan glaciers during the last decade using IRS LISS III images of 2000 /01/02 and 2010/11. Two thousand and eighteen glaciers representing climatically diverse terrains in the Him a-laya were mapped and monitored. It includes glaciers of Karakoram, Himachal, Zanskar, Uttarakhand, Nepal and Sikkim regions. Among these, 1752 glaciers (86.8%) were observed having stable fronts (no change in the snout position and area of ablation zone), 248 (12.3%) exhibited retreat and 18 (0.9%) of them exhibited advancement of snout. The net loss in 10,250.68 sq km area of the 2018 glaciers put together was found to be 20.94 sq km or 0.2% (2.5 % of 20.94 sq km).
Glacial retreat may have slowed down in the last decade and no doubt given the complex response of ice masses to their situation in a particular topographic setting and temperature changes such variations in rates of change of glacier decay will continue as the earth warms. Besides, as other water experts have pointed out , the big problem with interpreting the true significance of Himalayan glacier behavior is the lack of crucial baseline data for a) the amount of snowfall in the various Himalayan glacial source areas and b) much of the reporting of changes in glaciers present area changes and not changes in volume. The volume of ice corresponds to the volume of water held, so any assessment of damage to north Indian river supply must study volume change of ice as glacial melt contributes substantially to Himalayan river water flow. Furthermore, such data if it does exist and that collected in the future must be made public to be examined by as many experts as needed and not kept secret as has been the case with Himalayan river water data in the past. So, a lot more work in terms of basic data gathering needs to be done.
In any case such larger scale studies are useful pointers to regional trends and for pinpointing areas deserving more detailed studies.
Abstract:
The Himalayan mountain system to the north of the Indian land mass with arcuate strike of NW–SE for about 2400 km holds one of the largest concentration of glaciers outside the polar regions in its high-altitude regions. Perennial snow and ice-melt from these frozen reservoirs is used in catchments and alluvial plains of the three major Himalayan river systems, i.e. the Indus, Ganga and Brahmaputra for irrigation, hydropower generation, production of bio-resources and fulfilling the domestic water demand. Also, variations in the extent of these glaciers are understood to be a sensitive indicator of climatic variations of the earth system and might have implications on the availability of water resources in the river systems. Therefore, mapping and monitoring of these fresh water resources is require d for the planning of water resources and understanding the impact of climatic variations. Thus a study has been carried out to find the change in the extent of Himalayan glaciers during the last decade using IRS LISS III images of 2000 /01/02 and 2010/11. Two thousand and eighteen glaciers representing climatically diverse terrains in the Him a-laya were mapped and monitored. It includes glaciers of Karakoram, Himachal, Zanskar, Uttarakhand, Nepal and Sikkim regions. Among these, 1752 glaciers (86.8%) were observed having stable fronts (no change in the snout position and area of ablation zone), 248 (12.3%) exhibited retreat and 18 (0.9%) of them exhibited advancement of snout. The net loss in 10,250.68 sq km area of the 2018 glaciers put together was found to be 20.94 sq km or 0.2% (2.5 % of 20.94 sq km).
This comment has been removed by the author.
ReplyDeleteHi Suvrat, on the topic, here's a really interesting paper that came out recently in ESTL: Estimating the Loss of Himalayan Glaciers under Global Warming Using the δ18O–Salinity Relation in the Bay of Bengal
ReplyDeletethanks Kaustubh.. will check it out.. interesting approach..200 -400 years left at current rate of melting!
ReplyDelete