... is very prolific.
The photo above taken in March 2012 is of an excavation for a building about half a kilometer away from my home in Pune, India. The developer struck water at around 20 feet below the surface. Water began gushing out of sheet cracks in the basalt rock. Within a couple of days the water level had risen to just a few feet below the surface and then stabilized.
The water level you see in the picture is not the water table but the potentiometric surface. The developer had punctured a confined aquifer. Water in this type of aquifer is under hydrostatic pressure. The puncture or hole is this case creates a pressure gradient and water flowed from the aquifer (high pressure) into the hole (low pressure). It rose until the water pressure at the bottom of the hole equaled the water pressure in the aquifer at which point water stopped flowing out of the aquifer and hence stopped rising in the well /excavation.
In the picture below the red arrows point to the sheet cracks from which groundwater is seeping out.
The photo above taken in March 2012 is of an excavation for a building about half a kilometer away from my home in Pune, India. The developer struck water at around 20 feet below the surface. Water began gushing out of sheet cracks in the basalt rock. Within a couple of days the water level had risen to just a few feet below the surface and then stabilized.
The water level you see in the picture is not the water table but the potentiometric surface. The developer had punctured a confined aquifer. Water in this type of aquifer is under hydrostatic pressure. The puncture or hole is this case creates a pressure gradient and water flowed from the aquifer (high pressure) into the hole (low pressure). It rose until the water pressure at the bottom of the hole equaled the water pressure in the aquifer at which point water stopped flowing out of the aquifer and hence stopped rising in the well /excavation.
In the picture below the red arrows point to the sheet cracks from which groundwater is seeping out.